Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 5 de 5
Фильтр
1.
Iran J Immunol ; 18(1): 47-53, 2021 03.
Статья в английский | MEDLINE | ID: covidwho-2091347

Реферат

BACKGROUND: Incidence and severity of SARS-CoV2 infection are significantly lower in children and teenagers proposing that certain vaccines, routinely administered to neonates and children may provide cross-protection against this emerging infection. OBJECTIVE: To assess the cross-protection induced by prior measles, mumps and rubella (MMR) vaccinations against COVID-19. METHODS: The antibody responses to MMR and tetanus vaccines were determined in 53 patients affected with SARS-CoV2 infection and 52 age-matched healthy subjects. Serum levels of antibodies specific for NP and RBD of SARS-CoV2 were also determined in both groups of subjects with ELISA. RESULTS: Our results revealed significant differences in anti-NP (P<0.0001) and anti-RBD (P<0.0001) IgG levels between patients and healthy controls. While the levels of rubella- and mumps specific IgG were not different in the two groups of subjects, measles-specific IgG was significantly higher in patients (P<0.01). The serum titer of anti-tetanus antibody, however, was significantly lower in patients compared to healthy individuals (P<0.01). CONCLUSION: Our findings suggest that measles vaccination triggers those B cells cross-reactive with SARS-CoV2 antigens leading to the production of increased levels of measles-specific antibody.


Тема - темы
Antibodies, Viral/blood , Antigens, Viral/immunology , COVID-19/immunology , Immunization , Immunoglobulin G/blood , Measles-Mumps-Rubella Vaccine/therapeutic use , SARS-CoV-2/immunology , Age Factors , Aged , B-Lymphocytes/immunology , B-Lymphocytes/virology , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19/virology , Case-Control Studies , Cross Protection , Cross Reactions , Female , Host-Pathogen Interactions , Humans , Male , Measles-Mumps-Rubella Vaccine/immunology , Middle Aged , Tetanus Toxoid/immunology , Tetanus Toxoid/therapeutic use
2.
Elife ; 102021 11 23.
Статья в английский | MEDLINE | ID: covidwho-1529013

Реферат

Current SARS-CoV-2 vaccines are losing efficacy against emerging variants and may not protect against future novel coronavirus outbreaks, emphasizing the need for more broadly protective vaccines. To inform the development of a pan-coronavirus vaccine, we investigated the presence and specificity of cross-reactive antibodies against the spike (S) proteins of human coronaviruses (hCoV) after SARS-CoV-2 infection and vaccination. We found an 11- to 123-fold increase in antibodies binding to SARS-CoV and MERS-CoV as well as a 2- to 4-fold difference in antibodies binding to seasonal hCoVs in COVID-19 convalescent sera compared to pre-pandemic healthy donors, with the S2 subdomain of the S protein being the main target for cross-reactivity. In addition, we detected cross-reactive antibodies to all hCoV S proteins after SARS-CoV-2 vaccination in macaques and humans, with higher responses for hCoV more closely related to SARS-CoV-2. These findings support the feasibility of and provide guidance for development of a pan-coronavirus vaccine.


Тема - темы
COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Viral/blood , Coronavirus/immunology , Cross Reactions/immunology , Healthy Volunteers , Humans , Immunoglobulin G/immunology , Macaca , Middle East Respiratory Syndrome Coronavirus/immunology , Principal Component Analysis , Protein Domains/immunology , Serum/immunology , Serum/virology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Tetanus Toxoid/immunology , mRNA Vaccines/immunology
3.
Front Immunol ; 12: 749264, 2021.
Статья в английский | MEDLINE | ID: covidwho-1485055

Реферат

Background: COVID-19 is characterized by strikingly large, mostly unexplained, interindividual variation in symptom severity: while some individuals remain nearly asymptomatic, others suffer from severe respiratory failure. Previous vaccinations for other pathogens, in particular tetanus, may partly explain this variation, possibly by readying the immune system. Methods: We made use of data on COVID-19 testing from 103,049 participants of the UK Biobank (mean age 71.5 years, 54.2% female), coupled to immunization records of the last ten years. Using logistic regression, covarying for age, sex, respiratory disease diagnosis, and socioeconomic status, we tested whether individuals vaccinated for tetanus, diphtheria or pertussis, differed from individuals that had only received other vaccinations on 1) undergoing a COVID-19 test, 2) being diagnosed with COVID-19, and 3) whether they developed severe COVID-19 symptoms. Results: We found that individuals with registered diphtheria or tetanus vaccinations are less likely to develop severe COVID-19 than people who had only received other vaccinations (diphtheria odds ratio (OR)=0.47, p-value=5.3*10-5; tetanus OR=0.52, p-value=1.2*10-4). Discussion: These results indicate that a history of diphtheria or tetanus vaccinations is associated with less severe manifestations of COVID-19. These vaccinations may protect against severe COVID-19 symptoms by stimulating the immune system. We note the correlational nature of these results, yet the possibility that these vaccinations may influence the severity of COVID-19 warrants follow-up investigations.


Тема - темы
COVID-19/immunology , Pertussis Vaccine/immunology , SARS-CoV-2/immunology , Tetanus Toxoid/immunology , Vaccination , Aged , COVID-19/pathology , Female , Humans , Male , Middle Aged , Severity of Illness Index
4.
MAbs ; 13(1): 1978130, 2021.
Статья в английский | MEDLINE | ID: covidwho-1442969

Реферат

Recent years have seen unparalleled development of microfluidic applications for antibody discovery in both academic and pharmaceutical research. Microfluidics can support native chain-paired library generation as well as direct screening of antibody secreting cells obtained by rodent immunization or from the human peripheral blood. While broad diversities of neutralizing antibodies against infectious diseases such as HIV, Ebola, or COVID-19 have been identified from convalescent individuals, microfluidics can expedite therapeutic antibody discovery for cancer or immunological disease indications. In this study, a commercially available microfluidic device, Cyto-Mine, was used for the rapid identification of natively paired antibodies from rodents or human donors screened for specific binding to recombinant antigens, for direct screening with cells expressing the target of interest, and, to our knowledge for the first time, for direct broad functional IgG antibody screening in droplets. The process time from cell preparation to confirmed recombinant antibodies was four weeks. Application of this or similar microfluidic devices and methodologies can accelerate and enhance pharmaceutical antibody hit discovery.


Тема - темы
Antibodies, Neutralizing/isolation & purification , Immunoglobulin G/isolation & purification , Microfluidics/methods , Animals , Antibodies, Bacterial/immunology , Antibodies, Bacterial/isolation & purification , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/isolation & purification , Antibody Specificity , Antigens/immunology , Antigens, Neoplasm/immunology , Blood Preservation , COVID-19/immunology , Fluorescence Resonance Energy Transfer , Humans , Hybridomas/immunology , Immunomagnetic Separation , Lab-On-A-Chip Devices , Mice , Microfluidics/instrumentation , Muromonab-CD3/immunology , Plasma Cells , Recombinant Proteins/immunology , SARS-CoV-2/immunology , Tetanus Toxoid/immunology , Vaccination
5.
Sci Adv ; 7(22)2021 05.
Статья в английский | MEDLINE | ID: covidwho-1247308

Реферат

Since the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), various vaccines are being developed, with most vaccine candidates focusing on the viral spike protein. Here, we developed a previously unknown subunit vaccine comprising the receptor binding domain (RBD) of the spike protein fused with the tetanus toxoid epitope P2 (RBD-P2) and tested its efficacy in rodents and nonhuman primates (NHPs). We also investigated whether the SARS-CoV-2 nucleocapsid protein (N) could increase vaccine efficacy. Immunization with N and RBD-P2 (RBDP2/N) + alum increased T cell responses in mice and neutralizing antibody levels in rats compared with those obtained using RBD-P2 + alum. Furthermore, in NHPs, RBD-P2/N + alum induced slightly faster SARS-CoV-2 clearance than that induced by RBD-P2 + alum, albeit without statistical significance. Our study supports further development of RBD-P2 as a vaccine candidate against SARS-CoV-2. Also, it provides insights regarding the use of N in protein-based vaccines against SARS-CoV-2.


Тема - темы
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Coronavirus Nucleocapsid Proteins/immunology , Recombinant Fusion Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Tetanus Toxoid/immunology , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19 Vaccines/genetics , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/genetics , Female , Macaca fascicularis , Mice , Mice, Inbred BALB C , Mice, Transgenic , Phosphoproteins/genetics , Phosphoproteins/immunology , Protein Domains , Rats , Recombinant Fusion Proteins/genetics , SARS-CoV-2/genetics , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spodoptera , Tetanus Toxoid/genetics , Vero Cells
Критерии поиска